

R Hoadley, 22 July 2014

LV and MV Drives 101

© ABB Inc. July 24, 2014 | Slide 1

LV and MV Drives 101

Speaker name:Rick HoadleySpeaker title:Principle Consulting Applications EngineerMedium Voltage DrivesMedium Voltage DrivesCompany name:ABBLocation:New Berlin, WI

Agenda LV and MV Drives 101

What is a VFD?

- Goals
- Motors
- Method

Line Side Requirements

- Harmonics
- Power Factor
- Ground Configurations

Motor Side Challenges

- NEMA MG-1
- Topologies
- Reflected Waves

Drive Protection

- PQ Events
- Over-Voltage
- Over-Current

This is a Non-Drive System

Line Side: Sinusoidal Voltage Motor Side: Sinusoidal Current

This is a Drive System

Line Side: Current Pulses

Motor Side: Voltage Pulses

Why are AC drives used?

Large Operating Speed and Torque Area

Power Savings = **Cost Savings** with Fans and Pumps

0.5 to 1.5 year payback !

Adjustable speed to **Optimize Process**

Reduce production losses

Elimination of 6x Inrush Current for Soft Starting

Line Current, A vs Time, s

Line Current, A vs Time, s

Can have multiple starts per hour!

Greater Starting Torque

Operate at or close to **Unity PF** throughout Load Range

Adjustable Torque Limit to prevent damage to equipment

No mechanical jerk, smooth acceleration

What is LV and MV?

What is LV and MV?

What is LV and MV?

How do you change the speed of an AC motor?

How do you change motor speed? Motor construction *ia ib*

ØA2

a

How do you change motor speed? Motor equations

Input

- $S_{in} = FLA \times kV \times \sqrt{3}$ [kVA] FLA = Full load amps
- $S_{in} = P_{in}/PF_M$ [kVA]
- $P_{in} = S_{in} \times PF_M$ [kW]
- $P_{in} = P_{out}/\eta_M$ [kW]
- Losses
 - $P_{loss} = P_{in} P_{out}$
- Efficiency
 - $\eta_M = P_{out}/P_{in}$
- Speed (synchronous)
 - $n = 120 \times f / p$ [rpm]

FLA = Full load amps PF_{M} = Motor power factor

 $\eta_{\rm M}$ = Motor efficiency

f = Frequency, Hz p = Number of poles (2,4,6, ...)

How do you make variable frequency AC?

AC Drive Classifications

General Block Diagram of a Basic AC Drive

Basic AC Drive Topology 6-Pulse

Fixed AC Voltage Fixed AC Frequency Fixed DC Voltage

Adjustable AC Voltage Adjustable AC Frequency

What We'd Like to See -

An Ideal Supply Voltage

Common Power Quality Problems

- Too High
 - Switching in PF caps
 - DC drive transients
 - Switching off inductive loads
- Too Low
 - Voltage sags
 - Voltage notches
 - Voltage flat-topping
- Nothing's There
 - Voltage interruptions

What have we seen?

Transfer Switch

vent Number 108	Channel A	Setup 14	11/22/98	03:54:36.98
			\square	· · · · · · · · · · · · · · · · · · ·
				<u></u>
/				. ;
· · · · · · · · · · · · · · · · · · ·	\	·		
: ۱ 				
	\		. <u>f</u> i	
	<u> </u>	<u></u>	1.1	<u></u>

Voltage Modulation – AFE w/ Blown Fuse

ABB

Example of Load with Ground Fault

Ungrounded Supply

Example of Load with Ground Fault

PF Cap Insertion

PF Cap Insertion

Severe Distortion

Line-Notching from DC Drive

Voltage Transients – Inductive Load Switching?

(c)1988-1994 Dranetz Technologies, Inc. 658 GRAPHICAL & HARMONIC ANALYSIS A.BUSH HSTN 64 FULL CAN TWO 1305 VLL Event Number 8 Channel A Setup 14 11/02/98 12:22:30.35 Horizontal 100 milliseconds/division Vertical 500 Volts/division Vrms: Prev=463.2, Min=461.2, Max=465.1 - Worst Imp= -2213 Vpk, 111 deg

Single Notch

Voltage Sag

Voltage Interruption

658 GN	APHICAL & HA	RMONIC ANALYSI	8 (c)1988-1994	Dranetz Tec	hnologies, Inc.
Event	Number 22	Channel A	Setup 14	11/20/98	06:46:43.51
N	NN	<u>n</u>	<u> </u>	Ν	N N
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
				VV	
Horizo Vrms:	m tal 25 mill Prev=452.2 ₂	i seconds/divis Min=431.7, Max	: ion ∨ :=453.8 - Wor	ertical 200 st Imp=	Volts/division 0 Vpk, 0 deg

Analysis Rules-of-Thumb

Rule #1 = measurements and plots

- Don't rely on meter measurements alone
- Obtain waveform plots in addition to measurements
- Rule #2 = each phase to everything else
 - Take Voltage measurements and plots each line-toline
 - Take Voltage measurements and plots each line-toneutral
 - Take Voltage measurements and plots neutral-toground
 - Take Current measurements and plots in each line and neutral
 - Not just line-to-ground and not just line-to-line: BOTH

General Block Diagram of an Industrial AC Drive

What's Unique to High Power Drives?

- Higher Power
 - Usually major part of operation at a plant
 - Reliability is critical
 - More internal monitoring
 - Greater protective features
 - Line side
 - Transformer is expensive
 - Protection is critical
 - Line harmonics can be significant
 - Motor side
 - Motor is expensive
 - Protection is critical
 - Reflected Waves

Line Side Requirements

- Harmonics
- Power Factor
- Grounding Configuration

What are Harmonics?

What are Harmonics?

Total, Fundamental, Harmonic Current

Root Cause of Problems with Other Equipment

Current Harmonics

create

Voltage Distortion

Flat-Topping the Voltage

What are the IEEE 519-1992 standards?

Harmonic Voltage Limi	ts Table 10.2			
Low-Voltage Systems				
Application	Maximum THD (%)			
Special Applications - hospitals and airports	3.0%			
General System	5.0%			
Dedicated System - exclusively converter load	10.0%			

Current distortion Limits for General Distribution Systems (120V through 69,000V)						
Maximum Harmonic Current Distortion in Percent of Iload						
Isc/Iload	<11	11< =h <17	17< =h <23	23< =h <35	35< =h	TDD (%)
<20	4.0	2.0	1.5	0.6	0.3	5.0
20<50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.0
100<1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0
Even harmonics are limited to 25% of the odd harmonic limits above						
						Table 10.3
Isc=maximum short circuit current at PCC						
Iload=maximum demand load current (fundamental frequency component) at PCC						

What are the IEEE 519-1992 standards?

Harmonic Voltage Limits				
Medium-Voltage Systems (<u><</u> 69kV)				
Voltage Distortion	Maximum THD (%)			
Individual Harmonic Distortion	3.0%			
Total Harmonic Distortion	5.0%			

Current disto Max	vimum Har	monic Cu	rent Distribution	rtion in Pe	rcent of llc	ad
Isc/Iload	<11	11<= h <17	17<= h <23	23<= h <35	35<=h	TDD (%)
<20	4.0	2.0	1.5	0.6	0.3	5.0
20<50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.(
100<1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0
Even harmonics are limited to 25% of the odd harmonic limits above						
						Table 10.3
Isc=maximum	short circuit	current at P	CC			
Iload=maximu	im demand lo	oad current (1	fundamental f	requency cor	nponent) at F	
)14 Slide 51		, ,				

Where is the PCC?

For an Harmonic Study:

Need to calculate and measure the voltage and current magnitudes and distortion at each of the 6 locations (PCCs) noted.

Need to know types of loads, max loads and impedances.

Need to know if there are back-up generators, too.

Basic AC Drive Topology 6-Pulse Rectifier

Line Current Harmonic Mitigation Methods 6-Pulse $(120^{\circ}/2 = 60^{\circ})$

Basic Converter

AC Line Reactor

Link Choke and Reactor

Passive Harmonic Filter

Passive Notch Filter

Line Current Harmonic Mitigation Methods 6-Pulse

Active Harmonic Filter

Line Current Harmonic Mitigation Methods 12-Pulse (30°)

* Used in MV drives

Φ

Δ

Line Current Harmonic Mitigation Methods 18-Pulse (20°) * Used in MV drives

Auto-Transformer with Parallel Bridges

Line Current Harmonic Mitigation Methods 24-Pulse (15°), 36-Pulse (10°) * Used in MV drives

*Series or Series / Parallel Bridges, 24P

Line Current Harmonic Mitigation Methods Active Front End (AFE)

Line Current Harmonic Mitigation Methods Active Front End (AFE) * Used in MV drives

AFE with Isolation Transformer

*AFE with LCL Filter

NOTE: The AFE can be 2-Level, 3-Level, 5-Level (more on this later)

The Goal of Harmonic Mitigation

12-Pulse: 10% Ithd

18-Pulse, AFE, AHF: 5% Ithd

Line Current Harmonic Mitigation Methods Harmonic Content

Multi-Pulse	XFMR	lthd	PF		
 6 Pulse 	std xfmr	30-120%	0.90		
 12 Pulse 	6 phase shift xfmr	10-15%	0.92		
 18 Pulse 	9 phase shift xfmr	5-6%	0.95		
 24 Pulse 	12 phase shift xfmr	4-5%	0.96		
 36 Pulse 	18 phase shift xfmr	3-4%	0.96		
Active Front End (AFE)					
- AFE	std xfmr	4-5%	1.0		
Current Source P	WM				
 CSI, LCI 	std xfmr	5-6%	0 – 1.0 lead		

Power Cube

© ABB Inc.

Grounding Configurations

- Floating secondary

Solidly grounded secondary

- Low resistance grounded secondary
 - LV 10, 50, 100A
 - MV 200, 400A

Motor Side Challenges

- NEMA MG-1
- Topologies
- Reflected Wave

MG 1-2006, Rev 1, Part 30

Section IV APPLICATION CONSIDERATIONS MG 1-2006 Part 30, Page 1

Section IV PERFORMANCE STANDARDS APPLYING TO ALL MACHINES Part 30 APPLICATION CONSIDERATIONS FOR CONSTANT SPEED MOTORS USED ON A SINUSOIDAL BUS WITH HARMONIC CONTENT AND GENERAL PURPOSE MOTORS USED WITH ADJUSTABLE-VOLTAGE OR ADJUSTABLE-FREQUENCY CONTROLS OR BOTH

30.0 SCOPE

The information in this Section applies to 60 Hz NEMA Designs A and B squirrel-cage motors covered by Part 12 and to motors covered by Part 20 rated 5000 horsepower or less at 7200 volts or less, when used on a sinusoidal bus with harmonic content, or when used with adjustable-voltage or adjustable-frequency controls, or both.

NEMA Designs C and D motors and motors larger than 5000 horsepower and voltages greater than 7200 volts are excluded from this section and the manufacturer should be consulted regarding their application.

For motors intended for use in hazardous (classified) locations refer to 30.2.2.10.

Topologies

- Reflected Wave Reduction
 - 2-Level
 - 3-Level
 - 5-Level
 - Cascaded H-Bridge
- CSI, LCI
- CCV
- Matrix

Basic AC Drive Topology 2-Level Inverter Topology

- 2-Level VSI
- Phase output voltages

- 2-Level VSI
- Phase output voltages

- 2-Level VSI
- Phase output voltages

- 2-Level VSI
- Phase output voltages

- 2-Level VSI
- Phase output voltages

- 2-Level VSI
- Phase output voltages

- 2-Level VSI
- Phase output voltages

	B1	B2
A1	0	400
A2	-400	0

- 2-Level VSI
- Phase output voltages

2-Level Waveform, Line-to-Line

2-Levels

3-Steps

- 3-Level NPC VSI
- Phase output voltages

- 3-Level NPC VSI
- Phase output voltages

- 3-Level NPC VSI
- Phase output voltages

- 3-Level NPC VSI
- Phase output voltages

- 3-Level NPC VSI
- Phase output voltages

3-Level Waveform, Line-to-Line

3-Levels

5-Steps

- 5-Level ANPC VSI
- Phase output voltages

- 5-Level ANPC VSI
- Phase output voltages

- 5-Level ANPC VSI
- Phase output voltages

- 5-Level ANPC VSI
- Phase output voltages

- 5-Level ANPC VSI
- Phase output voltages

- 5-Level ANPC VSI
- Phase output voltages

- 5-Level ANPC VSI
- Phase output voltages

- 5-Level ANPC VSI
- Phase output voltages

- 5-Level ANPC VSI
- Phase output voltages

- 5-Level ANPC VSI
- Phase output voltages

- 5-Level ANPC VSI
- Phase output voltages

5-Level Waveform, Line-to-Line

5-Levels

9-Steps

Cascaded H-Bridge

How are VSI and CSI similar?

How are VSI and CSI similar?

CSI, PWM Converter, Isolated

CSI, 18P Converter, Isolated

LCI, PWM Converter, Isolated

Load Commutated Inverter

LCI, 12P Converter, Isolated

Reflected Waves

- Affected by:
 - Length of cable between drive and motor
 - Rate of rise of voltage (dV/dt)
 - Voltage step size
 - Pulse width

short

longer

longest

When does PD (Corona) occur?

- Reflected wave produces voltage peaks at the motor terminals
- Terminal voltage in excess of the insulation system CIV level will begin the PD / CORONA process
- Excessive voltage causes partial discharges / corona that attacks insulation materials

Partial Discharge

© ABB Inc. July 24, 2014 | Slide 136

How can we reduce the dV/dt? Filtering

* Used in MV drives

Basic Inverter and Motor

*dV/dt Filter

Output Load Reactor

*Broadband Sinewave Filter

RC Terminator

Step size of 100% Drive

Vpk is about 1.7x the Voltage step size

Step size of 20% Drive

Have small voltage steps

dV/dt = 10,000 V/us Drive 500 ft Μ 2DGraphSel1 2.50 2.00-1.50-1.00-VM1.... C5.V ... 500.00m 0

900.00 950.00 1.00m

1.05m

1.10m

1.15rr1.20rr

-500.00m

-1.00

800.00u

dV/dt = 500 V/us Drive 500 ft

M

Multi-Step Approach, low dV/dt

Implementation in a MV Drive

The n-level VSI topology 5-Level phase-to-phase voltage levels

ABB
Protection

- PQ Events
- Over-Voltage
- Over-Current

Drive Self Monitoring – LV Drive

Drive Self Monitoring – MV Drive

Operation and Protection Concept

- Try to keep operating
- If unable to due to external issues
 - Alarm, but don't stop
 - Trip
- If catastrophic failure
 - Limit collateral damage
 - Minimal MTTR (mean time to repair)
- Look-out for its motor and transformer, too!
 - Like a big brother or sister

LV Low Harmonic Drives Active front end drives, what do they look like?

Wall-mounted low harmonic drive ACS800-U11/U31

10 – 125 HP

Cabinet-built low harmonic drive ACS800-17/37

75 - 2800 HP

MV Low Harmonic Drives Active front end drives, what do they look like?

ABB LV Drives

MV Drives ACS 2000 4kV - 6.9kV 300 - 3,000 HP ACS 6000 2.3kV, 3.3kV 4,000 - 31,000 HP

Questions?

Rick Hoadley ABB, New Berlin, WI (262) 408-1589 Rick.L.Hoadley@us.abb.com

Power and productivity for a better world[™]

